Algebraic semantics for a modal logic close to S1

نویسنده

  • Steffen Lewitzka
چکیده

The modal systems S1–S3 were introduced by C. I. Lewis as logics for strict implication. While there are Kripke semantics for S2 and S3, there is no known natural semantics for S1. We extend S1 by a Substitution Principle SP which generalizes a reference rule of S1. In system S1+SP, the relation of strict equivalence φ ≡ ψ satisfies the identity axioms of R. Suszko’s non-Fregean logic adapted to the language of modal logic (we call these axioms the axioms of propositional identity). This enables us to develop a framework of algebraic semantics which captures S1+SP as well as the Lewis systems S3–S5. So from the viewpoint of algebraic semantics, S1+SP turns out to be an interesting modal logic. We show that S1+SP is strictly contained between S1 and S3 and differs from S2. It is the weakest modal logic containing S1 such that strict equivalence is axiomatized by propositional identity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC

In this paper we extend the notion of  degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and  introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...

متن کامل

Algebraic semantics of refinement modal logic

We develop algebraic semantics of refinement modal logic using duality theory. Refinement modal logic has quantifiers that are interpreted using a refinement relation. A refinement relation is like a bisimulation, except that from the three relational requirements only ‘atoms’ and ‘back’ have to be satisfied. We study the dual notion of refinement on algebras and present algebraic semantics of ...

متن کامل

Four-valued modal logic: Kripke semantics and duality

We introduce a family of modal expansions of Belnap-Dunn four-valued logic and related systems, and interpret them in many-valued Kripke structures. Using algebraic logic techniques and topological duality for modal algebras, and generalizing the so-called twist-structure representation, we axiomatize by means of Hilbert-style calculi the least modal logic over the four-element Belnap lattice a...

متن کامل

A modal logic amalgam of classical and intuitionistic propositional logic

We present a modal extension of classical propositional logic in which intuitionistic propositional logic is mirrored by means of the modal operator. In this sense, the modal extension combines classical and intuitionistic propositional logic avoiding the collapsing problem. Adopting ideas from a recent paper (S. Lewitzka, A denotational semantics for a Lewis-style modal system close to S1, 201...

متن کامل

Logics for Topological Reasoning ESSLLI Summer School August 2000 University of Birmingham, UK

4 The Modal Logic S4 7 4.1 Kripke Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 Modal Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3 Algebraic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.4 Power-Set Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.5 Mappi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Log. Comput.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016